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FSTENGER L

- |
A CATIOMAL FUNCTION FREQUENCY ;
- EXTRAPOLA TION IN ULTRASONIC TOM OGRS FRY ;
in—_—g'lispaper we \describecAa procedure for solving the inverse scattering

problem in ulir:;gnic inagﬁwg/ﬂggugin{be derivation of the method is based

1Trepe .fit:/ 3

o the Helmholtz equation model, i

e Vu+12Q+Hu = 0 :

"

it is applicable to any model for which the spacial sownd pressure u = u(T, k)

satisfies an asymptotic equality of the form

wd

. '

; @ o0 =g logu@R| ¢ = [ F@as+00) L koo :
N T P 4
- 3
where k is proportional to the frequency P de .otes the ray path along which Y
P the pressure wave travels fram the source point ?s to the detector point T, .‘

and o is a positive constant. The method is based on predicting ¢(=) = S, F(¥)ds

S e s
La.a o o 2_t

via a rational function procedure, using several values ¢(ky) , ¢(ky) ... , 6(kyr 1) - "
The method is illustrated for the case of the Rytov approximation to (1), in which

- .
PP, )
'.'.'.‘._-E-'-s At

case the paths P are straight lines. A perturbation method for correcting for

curved ray paths is also described. The algorithm can also be modified to image ]
. materials with more complicated frequency dependent atteruation. Examples of images
P:Z reconstructed from computer simulated data with and without Gaussian additive 3
; noise are given. The beneficial effect of a noise tolerant first norm data fitting |
F algoritim in :lnpraving image quality is shown.
L Key Words: Ultrasound, tomography, imaging, Helmholtz equation, rational functien, I
ﬁ attenuation, multifrequency, diffraction, refraction.
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1. INTRODUCTION AND SUMMARY

The methods derived in this paper are based on the Helmholtz differential

equation model
P @1.1) vu + k2(1+f)u - 0
!

where u denotes the spacial sound pressiure, Vz
3 dimensions, and

is the laplacian operator in

2
€0
1.2) . £F) = 1

;2—(5—)- -

InEq. (1.2), T = (x,,2) , ¢; is the speed of sound in the region (usually a
1iquid) swrrounding the body B, k = w/cy , where w = 2nx (frequency) and c(¥)

is the "speed” of sound at the point T in B . We assume that B is a subset

of a vwolune V , and that sound sources and detectors are located on 3V , the
boundary of V . We have displayed the word '"speed’ in quotes above, since in the
derivation of Eg. (1.1) c(@) is indeed the speed of sound at the point T , whereas,

in real life, materials have attemation, and therefare Im £ > C . 1In this peper
we derive
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a nurerical al. . ' 'wn for reconstructing the finction
1 a» . F o= /IFT

in V , based on the model (1.1).

The fact that the fimction ¢(*¥) tuns out to be complex, as well as other
criticisms of (1.1) have raised questions with regards to the validity of the
model (1.1), and this has led several authors [1,4] as well as some of us [3)
I to derive other models. However, under either plane wave cr point source exitatim,
all of these newly derived models including (1.1) have the cammon feature that

T
d
(1.4) ﬁ;loguk@!_ - Jers+o(1),k-»~
T
)

e

where uk(f) is the spacial sound pressure and L is a path in V along vhich

. . T I
RIT ~ J ORI

the pressure wave travels fram its source point T_ to the detector point T, .

s
While other inversion techniques are based on the particular model, the method of .
this paper applies to any such model. - i
Although f and u, are not C” functions of T in practice, and they are 3
therefore difficult to compute, we show that the function ‘
. T L
(1.5) ¢(k) = 7 log uk(x_-) -
s
is a very smooth and slowly varying function of k o an interval [kg,=) of the !
; real line, where k, > 0 . Indeed, an [kg,=) , the function ¢(:) satisfies the relatia
: (1.6) o) = j Fds+0KS) , koo, ;
L

where ¢ is a positive constant depending only on £ . In addition, although we

2
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carmot give a complete proof, we expect that ¢(k) is analytic and bounded in &

DRAETEIN © LR N |
» >
-

sector

Q.7m Sy = {k€C: |k| 2Ky, larg k| g 6)

and where k, and 6 are positive constants. Recently discovered results by
approximation theory [8] have shown that such a finction can be very accurately
approximated on [ko.-n] by a rational function of k . Thus if ¢(k) is known
only on a subinterval of [kg.=] , we can expect the "o-algorithm'(see e.g. [12])

| VA

VT 4 o

to yield a very sccurate approximation to ¢(=) = S, Fds .

To this end, we have simulated same tests for the case of the Rytov approxi-
mation to the solution of (1.1), taking

-b[F-F, 12
1.8 £TX) = e

and when u& is a plane wave. In this case it is possible [6,7] to explicitly

evaluate the Rytov approxdmation, Ryt[u, (¥)] and the paths L are straight

lines L parallel to the incoming field ug . By computing

, . Br.iy®) [T

(1.9 ¢1('k) g -nzlog-———:g— -
T
~ -

at 9 equi-spaced points in the range of frequencies between 1 megahertz and
4 megahertz, the o algorithm enables us to accurately campute

— g 2
<b|T-TpH!
(1.10) 6= = JLe 0" as

‘
'
i
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This sinple algorithm works well* 4f the numbers ¢(k) can be ccuputed | l‘
: sccurate to 4 or more significant Tiswes, but breaks down at 3.. “In orectice, we éq;ect
! that we will be able to measure ¢(k) accurate to 3 signi<icant f2sures. To this end, we
:ﬂ have introduced an "ll-adjusmmt" to our algorithm, which in effect computes the
N
limit of several rational function interpolations of ¢(k) , and then evaluates
' the 2! minimm of these limits. This has the effect of under-emphasizing the

larger errors of these limits, and if the ¢(k) are accurate to 3 sion’ficant figures,

we are sble to camute ¢(=) acorate to 3 significant figures.

In order to reconstruct an image fram the ¢(=), we use standard X-ray CT
algorithms [2] whick assume that the paths L are straight lines L . VWhile this
approximation is usually not unduly pessimistic for the case of sound waves in tissue,
it is not exact. To this end, we have introduced a mmerical scheme for correcting the
F which ve canstructed under the assunption that the paths are straight lines. This
method is based on a discretization of the equations recently derived in [7]. While
we have included this algorithm far campleteness, we have not vet tested it in practice.

In the final section of this paper we illustrate & recanstruction via the
p-algorithm of the function /
a1 (@ - | HEF |

j-

usifg simulated data obtained via the Rytov approximation. We also illustrate the |
result vhen 0.1% noise was added to the Rytov data, and finally, we illustrate the

result vhen our ll-adjusmmt algoritim is applied to the p-algorithm results

camputed using the noisy data. It is possible that we could hsve obtained better re-

sults by first applying the 2! smoothing algorithm to the data, and then applying

the rational extrapolation algorithm. We shall investigate this procedure in the funure.

1;1 owr similation we are able to distinguigsh two objects of the form (1.8)
separated by 2 wavelengths,

NP PP
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In our model (1.1) we have assuned that £ is independent of w . We ]
could still recover £ 4f itsfunctional form were known explicitly, such as, if ‘
Q.11 - £,D) = 0@’ + 8@ ,

a
by suitable narmalization of log w (¥) , e.g., by altering (1.5) to
1.12) ¢Ck) = El:—},m log u @) .
This, then would enable us to recover ]

(1.13) 6(=) -] h@ ds . ﬂ
L

Next, we could recover 8(F) by sampling

- ¥

(1.14) v = KO [e (k) - ¢(=)) !

»Ilt'@d“k-oo, <
LZu‘"(?)
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2. INTEGRAL EQUATION FORMULATION OF THE HRIMHOLTZ EQUATION

By means of Green's theorem, one can derive the integral equation

I @y 3® = 9@ +@[[[ qEIeEEnEInE) | i
5 v
which is equivalent to (1.1), where

o

2.2) 6® =

and vhere ug('?) denotes the input spacial pressure wave. In practice one usually
has point sources of the form

IK[FE, |
2.3 w® = £

4 lr-rs |

in which ;s denotes a source point, although the plane wave form -

(2.4) ug&) - oFT
X is sametimes also used, where '

(2.5) R o= Ogkpk) ;s K] =k=gt

’—n,. " r—l.w' v '..1‘.
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3. ASYMPIOTIC ESTIMATE OF loguk

I Let w0 be defined by efther Egs. (2.3) or (2.4). The theory of gecmetric
h:; optics then predicts that (see e.g. [3 p. 134])

R &

N . e - exp{ik[] A¥T ds+0Q1)]} , kv

' uk&-s) L

where in the case of ug defined by (2.3), L denotes the ray path emenating
l from T, to the point T, vhile in the case of up defined by (2.4), L

starts out in the direction of k at some point on the boundary of V and ends
up at ?d .

Let us now assume that £ € Lip(o)(V) , for same 0 > 0 . We believe that in
applications we must always have o > 1/2 , although for pwrposes of deriving our
algorithm, any positive value of o will suffice. Then, upon substituting (3.1),
with ?d replaced by T into (2.1) and assumning L to be any cl path, we find
that the (1) temm in (3.1) can be replaced by O(k™%/?) . That is,

€M)
(3.2) o Al exp{ik[J AFT ds + 0k D))} , k=
Y (7g) L '

This result may be established via a procedure similar to that applied to the
equations (2.2) and (1.7) of [10], with >0 ,n> 0 and m+n=o .
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4. ANALYTIC PROPERTIES OF THE SOLUTION

In this section we study the analytic properties of the solution w, of
(2.1) as & functin of k , in order to show that we can perform accurate
approximation of the fnction ¢ defined in (1.5) on [ky,*) .

Ve shall show that with ul defined by (2.3), the solutin w () of
(2.1) is a ratio of two entire fimctions of k . The poles of this function
occur at the points k= km for which the hamogeneous equation corresponding
to (2.1) has solutions. Ve then show that these nubers k, camot be real.

Let V be a bounded region in R° , and let f € Lip gy (V) , such that
Inf>0a8e on V,andsuhthat £20 on K -V . Hence

.1 u @ +1EH@ @ =0, Fe v
%.2) P @ +1u@ =0, reR -V,

Now Wileox [11] has shown that if Imk >0 on R - V , then any solution

——

u of (4.2) must satisfy

2
(.3) J l%— ’ik\lldSG.’)"O,R"”
=R
and
2
4.4) [ es@-c0geca Raw.
=R

Ry Green's theorer, we have

&.5) J TANE + | w2 - ] TR 8@
R T<R =R
8
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. (%.6) K2 [ (+) |u) 2V +[ w2V -] T as@) .
- <R r<R wR

Let us now assume that k is real. Then, by taking imaginary parts of (4.6),

' we get

“n ¥ fv (m ) [u]?VE) = Im [ u %dS(r')
=R

= Im I u[-g—:- - ilu}dS®) + Im(-ik) I lulzds(?) .
=R =R

o e ERA I RS
[V PR A REE A

s

By applying Schwartz's inequality to the first integral on the right hand

side, letting R+ = , wusing (4.3) and (4.4), and recalling our assumption
that Im£>0 s.e.on V, we get

(.8) 0 < k? [ (m ) [u|’VE) = - ke <0 .
v

This contradiction proves

1LEMMA 4.1: If m£>0 a.e. on V, then the equation

ik IT-r']|

(4.9) u @ = Kk I
V @|EE |

f(?')uk(i-")dV(F')
camot have any nontrivial solutions for k real.

4
L
EE’ Indeed, attamts at extending Lemma 4.7 to camplex values of k suggest

-

o that if we set
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f@ANVE) = e

; (4.10) v '

] . v-| @@, _-;

; v !

where J

) b
(%.11) 6>0,0<0<n, p/[V] <1/2

and if 6' in the range -7/8 < §' < 0 is defined by

(4.12) tan 26' = - psin®
[Vi+p cos &

then the equation (4.9) has no nntrivial solutions if k= |klei° satisfies

(4.13) -8 <a<T-8" .
Although we cammot prove this, we expect that the following assumption is probably J

|
valid if the equation (4.1) has no solutions w for which the rey paths are -*
trapped in V:

ASSIMPTION 4.2: If Im£> 0 in V and if (4.10) and (4.11) are satisfied

then there exists a sector

(4.14) S('ko.e) = {k€T: |k > ky |arg k| < 6}

where ky and 6 are positive numbers, such that whenever (4.9) has a nontrivial
solution u, then k ¢ Sy, 8) .
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LEMA 4.3: T o lution v of Eq. (2.1) may be represented in the form
(4.15) - u @ = %—?&%—

vhere for each fixed ¥, X and Y are entire fimctions of k .

PROCF : We carry out the proof only for the case of u& defined by (2.3).
The proof in the case of (2.4) is similar, and we omit it.

Instead of (2.1), we consider the equation
:I.alr-rs|

uk,a,r) = S~

an|Tr |

(4.16) -
ialr-rsl _
+ K2 Iﬂ e f(T')ulk,a,r")VET') .
lm]r-rs]
We know fram the theory of Fredholm integral equstions (see e.g. [4]) that for
every fixed a€ L and T = (x,y,z) , the solution u of Eq. (4.16) is a ratio

of two entire functions of kz , and hence of k , i.e.,

.17 uk,a ) = X&.aD
Y(k,a,T)

wvhere X and Y in (4.17) are entire fimctions of k . Inspection of the
proof of this result for the case of (4.12) shows that for fixed k and T,
X and Y in (4.17) are also entire functions of a . Fence for fixed

T, X(k,k,Y) and Yk, k,.I) are entire functions of k.

11
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1DMA 4.6: If FELip (V) , if ) is defined by either Egs. (2.3) o
(2.4), and if Assumption 4.2 holds, then the finction ¢ defined by (1.5)
is analytic and bounded in the sector S(ko.ﬁ) , Where it satisfies the relation

.18) 6k) = L JFEds + 02 ks = in Sky8) -
PROOF : By Assumption 4.2 there are no nontrivial solutions v of Eq. (4.9),
with k in S(k;,8) . Hence the finction Y(k,F) in Eq. (4.15) does not

vanish if k € S(ko,e) . Hence ¢(k) is analytic in S(k,.€) . Eq. (4.18)
therefore follows fram Eq. (3.2).

12
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5. RATIONAL APPROXTMATION PREDICTION

In this' section we shall show that we can 'predict"
(5.1) o(=) = jL JIFT ds

using the Thiele algorithm for constructing a rational function which interpolates
¢(k) . We first prove

LEMA 5.1: Let ¢(k) be defined as in Lemma 4.2. Corresponding to every integer
N > 0, there exists a rational function

N N-1
c + o,k + ...+
(5.2) rN(k) = .QkT_:l_ﬁ_ .

3 +d1k.1+"'+dN

such that
/2
(5.3 lok) - )| < € e'cnl . kgskgw

where ¢ and C are positive constants independent of N and where k, is de-
firied as in Lemma 4.1, Indeed, for any ¢ > 0 , we may take

1/2
(5.4) c = (232) - ¢

where o is defined as in (3.2) and 6 as in (4.10). Then C = C(e) .

PROOF: In [9) a ratimsl function of 2z similar to (5.2) was constructed, for
approximating a function ¥(2) on -1 <2z <1, vhere ¢ was analytic on the wnit

13
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disc. A simpl: -=-’ation of the argument in [9] yields (5.3) and (5.4).

! The inequality (5.3) tells us that rational finctions do a considerably better
e Job of approximating ¢(k) than polynamials in 1/k . For example, if

[6C)-¢(m)] ~ xo/2 » ¢ $ C, then no matter how the constants LY
e (5.5) max l¢G) - I b
= =0

by, ... /by are selected,

where C' 1is a positive constant which depends neither on the bj noron N.
In practice, the constant o is not known a priori. Nevertheless by the
linear methods of [8,9], (5.3) is still satisfied for some positive constants ¢
and C.

We note also, from (5.1), (5.2) and (5.3), that
1/2
.6 (=) - Ty = le AFEds - ¢p) €N

This fact, and the fact that Lemma 5.1 tells us that ¢(k) is "very nearly" a

rational finction, suggests that the Thiele rational function algorithm should

provide an effective procedure for determining <o -
Given the data

N
5.7 {kj ' “kj)}j-o

where the k.1 are distinct and real, the Thiele Algorithm for constructing an
rN('k) of the form of Eq. (5.2) is described by the following equations:

14
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by = OO‘j) » 3J=0,1,.... 2

Keyq -k
: ojl - 4t , §=01,....281
5.8 % 4y - 0

{ i-2 ki“‘ -k j-O.l.....m-i
5 = °J+1+"_'{_—'1—T:l- T ¢ 123,
Pj+1 = Pj

Then the rational function ry(k) of the form (5.2) which interpolates ¢ at
the points kj may be computed via its continued fraction representation

| .
oG = gt ’{'Tk'qr
(5.9 1

In particular, we have

(5.10)
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: 6. 2! IMPROVEMENT OF NOISY DATA

- The algorithm (5.8) for predicting ¢(=) has been tested on the function (1.9),
under the assurption that we can compute ¢(k) in the range of frequencies between

' 1 and 4 megahertz. Indeed, taking N as low as 3 and evaluating ¢(k)

LS Ad

accurate to 7 decimals we can compute the integral in (1.10) to 6 decimals
accuracy. Our test runs have shown however, that while (5.8) still yields reliable
results when the mumbers tb(kj) are romnded to &4 decimals accuracy, it fails
when they are rounded to 3 . We have found that this problem can be remedied by

taking the (usual) 2! minimm of these. That is if

{cgn) }M
m=1

are M such predictions obtained by applying (5.8) to M different sets of data

of the form (5.7), the gl minimum of the cém) is the number a which

minimizes

—

M
(6.1) s@ = ] le™-a
m=1

In this way, we are able to use noisy data of the form (5.7) which is accurate to

only 3 decimals to predict ¢(=) = a accurate to 3 decimals.

In the case when the cg are real, it is easily seen that min _S(a) = “““(m>s<c¢§’“))
Hence, even for general complex cg") , it is convenient to replace the exact solu-
tion a of (6.1) by the approximation, a ®= a+ig8 , vhere o and B are real, and

where

' M '
a = FRe cém ): s(l)(ﬁ') zl lRe cém)-a'lz s(l)(P.e cém ))
=

(6.2)
(A4 M "
g = I c(()m ): s(z)(BO) = Z I_',, cém)- B.lz S(Z)(:”‘ C‘()m )) i
m=]
16
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7. CORRECTION FOR RAY REFRACTION

Our experience has shown that the ray paths L of sound waves in tissue areusually

very nearly straight lines L . We may thus use the equation derived in [7]) to
derive a correction on the F & F , where F 1is constructed under the assumption
that the paths L are straight lines L . To this end, if ?s = (0,0,0) ,

Ty = (2,00

L
(2.1) F = LF& = Jo F(x,e¢(x),e¥(x)) vVl+¢ c»'(x)2+t;2;'(x)2 & ,

that is, L is the path

(7.2) L = {(x,y,2): y=¢e¢(x) ,z=¢ev(® ,0<x<2} ,
and
(7.3) F = JIFT

In the notation of [7], we write

(7.4) , F = 1l4¢h ,

i.e

(7.5) ¢ch = J/JFT-1
17
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In ultrasonic tomography |e(@) - col / lcol < 1/10 , o that |£| <1/5;
hence assuming that |h| < 1 , we may assume the relation lel £ 1/10 .
In order to reconstruct F via straight line methods, we would like to know

2
(7.6 os [ P& - F -

To this end, the following equations are derived in [7)

L
.7 e = Jo e tony + b, + 302+ v d &+ oD

(7.8)

h, = h(xy,2) lY -z=0

as well as the equations
(7.9) ¢" = hy ' V' o= h .
which are solved, subject to the boundary conditions

(7.10) ¢(0) = ¢(2) = y(0) = y(2) = 0

We now apply these results to our case.

Assuning that the paths are straight lines, we can reconstruct an F , such
that
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(7.11)

Wewouldlik‘ctokrw Fo.mchthat

vhere, upon ignoring terms of order ¢

(7.14)

where by (7.8), (7.9) and (7.10)

(7.12) F, = J Fo dx
L 0 0
Then, we have
(7.13) FL -
3

reduction in the magnitudes of the corresponding quantities),

Fo = Fo+iler@?+ vl

F(x,0,0)

F(x,0,0)

FL"e

, and taking ¢ =1 (implying a corresponding
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0 y oY
(7.15)
1 L - X . 2
VX)) = 3§ j (t-2)F,(t,0,0)dt + j F,(t,0,0)de 3
0 0
Let us now derive a numerical scheme for making the correction (7.14). To
this end we assume that F is known on a 3-dimensional pixel array with side h , -:_
vhose centers are located at the points l
1
3
(7.16) {¢ ' (-Dh, G-bh . - A :
' 17350101 a1 11 70 DT TV ) gel el .
We then use the spproximations ‘
'
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p % = ho§ 1 =y i#

Ejo € Fy Ccypnote = £ ] t@-proggily = o

L X = h 1 1 2 :

EJo (-1 Fyleypmde = ] t@-pho g2y = Dy i

l ]

to get — :

=1 2 2
(7.18) Figk = Fige = 7 [Agg - Cyd” + By - Dy

After making such an ''x-sweep" for each j and k , we then make a similar
“'y-sweep'', and repeat, wntil the changes in the numbers Fijk become negligible.
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8. ANEDAFLE

In this section we illustrate the application of the formulas developed in

: Sections 5-6 of the paper via a simulation carried out for the case of the Rytov
I model. The Rytov approximation u(r) x Ryt.{u(T)) is often made for the solution
to (1.1), vhere

KT+H

I (8.1) Ryt.{u@} = e

‘ and vhere

2 -, p— ,
.2 W@ - -%”! vm{girrJ«I\;g'f?rnf(f)av(f')
R

Our similation was carried out for the case of

4 -blF-F, |2
(8.3) G - j[le J

since it {s possible to explicitly evaluste W vhen £ has the form (8.3) [10].
In (8.3) the points ?j are located at ?J - (O.yJ.O) , where in wnits of milli-
mters, y; = 3.75, y,= 0, y3=-2.5,y,* 4.375 . The muber b was chosen
50 that each Gsussian

- 12
)
. lr-rjl

had a full width at half maximm equal to 1l mm, i.e., about 2 wavelengths at
a frequancy of 2.5 MH (megahertz), and sound speed Co-lswnluc.
All reconstructions are based on the formula




.......

- ——— i P S S LI
s War I e Bt S SRR Lt e e IR T

g Rdranire AScire e R AN :

x

* -
~
.
o
‘I
-
s

. T

= (8.4) img W@ 4. | t®a

‘ ke T, L

vhere L is a straight line path[10], and where the mubers (8.4) were obtained by
' using the algorithms (5.8)-(5.10) by taking 9 wvalues of k corresponding to

' 9 equi-spaced frequencies in the range of 1 to 4 M .

‘. Figure 8.1 is a picture of the exact object digitized to a 41 x 41 pixel

array, each pixel having dimension .3125 mm x .3125 mm.
The pictures in Figures 8.2, 8.3 and 8.4 (as well as Figure 8.1) were obtained

from reconstructions carried out in the Ultrasound Laboratory at the University of

Utah, and based on the methods of this paper. The pixel array in each dimension
is the same as in Figure 8.1. The projection data was obtained from 30 views over
180 degrees. The line of detection was positioned at 8 cm from the center of
rotation.

The picture in Figure 8.2 was obtained by applying the algorithms (5-7)-(5.10)
to data {kj' Zwkj(ﬂ/ (ikj)]jgcl accurate to 7 decimals. It deviates from the

—

exact object at each end, since there the value of £(¥) in (8.3) was very small,
so that the resulting significant figure accuracy in the data was less than &
places. The rational function algorithm was therefore less accurate at these ends.
- The picture in Figure 8.3 is a reconstruction obtained as in Figure 8.2, but
by adding random noise with normal distribution and standard deviation of 0.1% to
the simulated data.

Figure 8.4 is a picture of the result of the reconstruction of the simulated data

from 10 sets of 9 frequencies equally spaced in the range fram 1 to & M.

Random noise with normal distribution and standard deviation of 0.1% was again added :
to the data as for the data of Figure 8.3, but here the first norm procedure of Egs. |
(6. 2) was used on the predictions cg) to obtain more accurate predictions. '
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FIGURE 8.1: Digitized Image of Test Object

The test object consisted of four Gaussian distributions as shown within
the lower box. The brightened line through the center of the objects indicate
the location from which the profile (plotted in the upper box) was taken. The
separations of the Gaussian objects are 3.75, 2.5, and 1.875 mm, and the full
width at half maximum is 1.0mm for each of the objects.
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FIGURE 8.2: Reconstruction of Test Object from
Rational Function Prediction in the
Absence of Noise.

The reconstructed object is almost of the same quality as the original
test object., Scattering data were generated by application of the Rytov
approximation scattering integral. Projection data were made from the rational
function prediction using nine equally spaced frequencies from 1 to 4 MHz. Re-
construction from the extrapolated data was done using the ART algorithm along
straight lines.
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FIGURE 8.3: Reconstruction of Test Object in
the Presence of Random Noise Without
Data Condition.

Random noise with a normal distribution of mean zero and a standard
deviation of 0.1% was added to the simulated data at each frequency. The
rational function extrapolation was then obtained from this noisy data and,
the reconstruction was carried out in the same manner as for Fig. B.2.
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FIGURE 8.4: Reconstruction of Test Object in the 3
Presence of Noise Using the Data Con- .
ditioning Algorithm of Equation (6.2).

Scattering data was simulated for 10 different sets of 9 uniformly
spaced frequencies from 1-4 MHx and random noise with 2 mean of zero and a
standard deviation of 0.1% was added to all of the data. The rational
function extrapolation was applied to each of the ten sets of frequencies, i
and then the first norm procedure of Eq(6.2) was appiied to the extrapola- i

tions. Finally, the reconstruction algorithm was applied to the averaged 5
data in the same manner as the previous two figures. o
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